Inactivation of cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a thiophene-containing anticancer drug.

نویسندگان

  • Hsia-lien Lin
  • Haoming Zhang
  • Christine Medower
  • Paul F Hollenberg
  • William W Johnson
چکیده

An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b(5) and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b(5). The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a K(I) of 24 μM and a k(inact) of 0.04 min(-1). This K(I) is significantly greater than the clinical OSI-930 C(max) of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation of the thiophene sulfur to give the sulfoxide, which has previously been shown to be a significant metabolite of OSI-930. Because OSI-930 is an inactivator of P450 3A4 but does not exhibit any effect on P450 3A5 activity under the same conditions, it may be an appropriate probe for exploring unique aspects of these two very similar P450s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential inhibition of cytochromes P450 3A4 and 3A5 by the newly synthesized coumarin derivatives 7-coumarin propargyl ether and 7-(4-trifluoromethyl)coumarin propargyl ether.

The abilities of 7-coumarin propargyl ether (CPE) and 7-(4-trifluoromethyl)coumarin propargyl ether (TFCPE) to act as mechanism-based inactivators of P450 3A4 and 3A5 in the reconstituted system have been investigated using 7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) and testosterone as probes. CPE inhibited the BFC O-debenzylation activity of P450 3A4 in a time-, concentration-, and NADPH-de...

متن کامل

The X-Ray Crystal Structure of the Human Mono-Oxygenase Cytochrome P450 3A5-Ritonavir Complex Reveals Active Site Differences between P450s 3A4 and 3A5.

The contributions of cytochrome P450 3A5 to the metabolic clearance of marketed drugs is unclear, but its probable role is to augment the metabolism of several drugs that are largely cleared by P450 3A4. Selective metabolism by 3A4 is often a concern in drug development owing to potential drug-drug interactions and the variability of 3A4 and 3A5 expression. The contribution of P450 3A5 to these...

متن کامل

Metabolic intermediate complex formation of human cytochrome P450 3A4 by lapatinib.

Lapatinib, an oral breast cancer drug, has recently been reported to be a mechanism-based inactivator of cytochrome P450 (P450) 3A4 and also an idiosyncratic hepatotoxicant. It was suggested that formation of a reactive quinoneimine metabolite was involved in mechanism-based inactivation (MBI) and/or hepatotoxicity. We investigated the mechanism of MBI of P450 3A4 by lapatinib. Liquid chromatog...

متن کامل

Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: selective inactivation of P450 3A4.

The principal enzyme involved in the oxidation of mifepristone is cytochrome P450 3A4 (CYP3A4), which undergoes mechanism-based inactivation by the drug. However, no information is available on the interaction with CYP3A5, the second most abundant CYP3A enzyme in adult human liver. Oxidation of mifepristone by recombinant CYP3A4 produced mono- and didemethylated products and one C-hydroxylated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 39 2  شماره 

صفحات  -

تاریخ انتشار 2011